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Abstract

We present Gemma-Prune, a multi-stage model compression pipeline that reduces the
Gemma 3 4B IT QAT vision-language model from 2.8 GB to 2.1 GB while preserving both text
generation and image understanding capabilities. Our approach combines vocabulary pruning
(262K→144K tokens), vision encoder quantization with dimension padding, text layer removal,
image resolution reduction (896→672 pixels), dead neuron pruning, and weight splitting for lazy
loading. Deployed on Apple Silicon via MLX Swift, the compressed model achieves 22% faster
text generation (110 vs. 90 tokens/s), 3.4× faster image prompt processing (184 vs. 54 tokens/s),
and 23% lower peak memory (2.2 GB vs. 2.9 GB for text-only inference). We identify critical
failure modes in the compression process: vision layer removal destroys image understanding
even with only 35 MB of savings, while reducing resolution to 448 px causes token repetition
loops during generation. The optimal resolution of 672 px reduces vision attention compute by
approximately 3× without quality degradation. Our pipeline and deployment tools are open-
sourced to facilitate on-device VLM deployment research.

1 Introduction
The deployment of vision-language models (VLMs) on mobile devices presents a compelling but
technically demanding frontier. Modern smartphones, particularly those equipped with Apple
Silicon (iPhone 15 Pro, iPad Pro), offer neural engine capabilities and unified memory architectures
that make on-device inference feasible in principle. However, the practical constraints are severe:
the iPhone and iPad impose a hard limit of approximately 8 GB of unified RAM shared between
the operating system, applications, and model weights, leaving only 4–5 GB available for model
inference in typical usage scenarios.

Gemma 3 4B IT [Team et al., 2025] represents Google’s state-of-the-art compact vision-language
model, combining a SigLIP-based vision encoder [Zhai et al., 2023] with a 4-billion parameter text
transformer. The model supports multimodal inputs—processing both text and images—making
it suitable for a wide range of mobile applications including visual question answering, document
understanding, and accessibility tools. The Quantization-Aware Training (QAT) variant at 4-bit
precision [Nagel et al., 2022] reduces the model to 2.8 GB on disk, a significant reduction from the
original bfloat16 representation, but runtime memory consumption of approximately 5.5 GB during
image processing still exceeds practical mobile deployment budgets.

In this work, we present Gemma-Prune, a systematic multi-stage compression pipeline that
addresses this gap. Our approach is motivated by the observation that no single compression
technique is sufficient; instead, we combine seven complementary optimization steps, each targeting
a different source of redundancy:
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1. Vocabulary pruning: The original vocabulary of 262,208 tokens contains extensive CJK,
Arabic, and Cyrillic scripts unnecessary for English-only deployment. We prune to 144K tokens,
saving 170 MB through compact embedding remapping.

2. Vision fc2 quantization with dimension padding: The SigLIP vision encoder’s interme-
diate dimension (4304) is not divisible by any MLX-supported quantization group size. We
introduce a zero-padding technique that enables 4-bit quantization while preserving mathemat-
ical equivalence.

3. Text layer pruning: We remove the three deepest transformer layers (31–33), exploiting the
redundancy in late-stage feature refinement.

4. Resolution reduction: We reduce the vision encoder input from 896×896 to 672×672 pixels,
cutting vision self-attention compute by ∼3×.

5. Dead neuron pruning: Activation profiling reveals that 60–100% of MLP neurons in layers 14–
30 are effectively dead. We physically remove these neurons with careful alignment constraints.

6. Weight splitting: Separating language and vision weights enables lazy loading—text-only
conversations load only 1.9 GB, with vision weights loaded on demand.

Critically, our work also documents negative results. We demonstrate that removing even
four vision encoder layers (saving only 35 MB) completely destroys image understanding, and that
reducing resolution below 672 px induces degenerate token repetition loops. These findings establish
important boundaries for VLM compression.

The compressed model is deployed through gemma-cli, a Swift command-line tool built on
Apple’s MLX framework [Hannun et al., 2023], enabling streaming inference with real-time perfor-
mance statistics. Our contributions are:

• A complete, reproducible 7-step compression pipeline reducing Gemma 3 4B from 2.8 GB to
2.1 GB with preserved multimodal capabilities.

• A dimension-padding technique for quantizing layers with prime-factor intermediate dimensions.

• Systematic failure mode analysis identifying critical thresholds in VLM compression.

• An open-source Swift deployment pipeline for Apple Silicon devices.

2 Related Work

2.1 Model Compression

Model compression encompasses a broad family of techniques for reducing the computational and
memory footprint of neural networks. Quantization reduces the numerical precision of weights
and activations, with post-training quantization (PTQ) [Frantar et al., 2023, Lin et al., 2024]
and quantization-aware training (QAT) [Nagel et al., 2022] being the dominant paradigms. Our
work starts from a QAT 4-bit model, applying further compression on top of an already-quantized
baseline—a relatively underexplored regime.

Structured pruning removes entire neurons, attention heads, or layers from transformer ar-
chitectures [Ma et al., 2023, Men et al., 2024]. Unlike unstructured pruning, structured approaches
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yield immediate speedups without specialized sparse computation kernels. We employ both layer-
level pruning (removing entire transformer blocks) and neuron-level pruning (removing MLP neu-
rons based on activation statistics).

Knowledge distillation [Hinton et al., 2015] trains a smaller student model to mimic a larger
teacher, and has been applied to language models [Sanh et al., 2019] and vision-language mod-
els [Fang et al., 2024]. We do not employ distillation in the current pipeline but identify it as a
promising direction for quality recovery in future work.

2.2 Vision-Language Model Optimization

Vision-language models present unique compression challenges due to their heterogeneous architecture—
typically a vision encoder, a projection layer, and a text decoder, each with different sensitivity to
compression [Liu et al., 2024, Alayrac et al., 2022]. Recent work on LLaVA compression [Shang
et al., 2024] has shown that vision encoders are significantly more sensitive to pruning than text
decoders, a finding we corroborate in our experiments.

The SigLIP vision encoder [Zhai et al., 2023] used in Gemma 3 employs a standard Vision
Transformer (ViT) [Dosovitskiy et al., 2021] architecture with 14 × 14 patches and learned posi-
tion embeddings. Compressing the vision encoder requires careful handling of position embedding
interpolation [Cai et al., 2023], which we address through 2D bilinear interpolation on the patch
grid.

2.3 Mobile Deployment Frameworks

Apple’s MLX framework [Hannun et al., 2023] provides a NumPy-compatible array library opti-
mized for Apple Silicon’s unified memory architecture. MLX Swift [Apple, 2024] extends this to
native Swift applications, enabling direct integration with iOS and macOS apps. The unified mem-
ory model eliminates CPU-GPU data transfers, making it particularly suitable for large model
inference. Alternative frameworks include Core ML [Apple, 2023] (which requires model conversion
and has limited support for novel architectures) and llama.cpp [Gerganov, 2023] (which supports
quantized inference but lacks native vision-language model support on Apple platforms).

2.4 Vocabulary Pruning

Multilingual language models allocate significant embedding capacity to scripts and languages un-
necessary for specific deployment scenarios. Vocabulary pruning [Zheng et al., 2024] selectively re-
moves unused tokens and compresses the embedding matrix. For models using SentencePiece [Kudo
and Richardson, 2018] or BPE [Sennrich et al., 2016] tokenization, naive vocabulary pruning can
break subword tokenization chains, leading to out-of-vocabulary tokens during inference. Our ap-
proach addresses this through comprehensive token collection that includes BPE-merged forms,
inflected variants, and byte fallback tokens.

3 Method
We describe the Gemma-Prune compression pipeline, which consists of seven sequential stages.
Each stage produces a self-contained model checkpoint, enabling validation at every step. The
pipeline is designed to be applied to the Gemma 3 4B IT QAT 4-bit model [Team et al., 2025],
though the techniques are broadly applicable to similar vision-language architectures.
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3.1 Architecture Overview

The Gemma 3 4B IT model comprises three components:

Text Decoder. A 34-layer transformer with grouped-query attention (GQA): 8 attention heads,
4 key-value heads, head dimension 256, hidden size 2560, and MLP intermediate size 10240. The
activation function is gelu_pytorch_tanh. Each layer uses four layer normalization operations:
input, post-attention, pre-feedforward, and post-feedforward. The model employs tied word em-
beddings (i.e., the embedding matrix is shared between input and output).

Vision Encoder. A SigLIP [Zhai et al., 2023] Vision Transformer with 27 layers, hidden size
1152, intermediate size 4304, and 16 attention heads. Input images are processed at 896 × 896
resolution with 14× 14 patches, yielding 64× 64 = 4096 patch embeddings that are pooled to 256
image tokens.

Multimodal Projector. A linear projection from the vision encoder’s hidden dimension (1152)
to the text decoder’s hidden dimension (2560), bridging the two modalities.

The QAT 4-bit variant quantizes all linear layers in the text decoder to 4-bit precision with
group size 64, while the vision encoder remains in bfloat16 (with the exception of quantized position
embeddings). The total model size is 2.8 GB stored as a single safetensors file.

3.2 Step 1: Vocabulary Pruning

The original Gemma 3 vocabulary contains 262,208 tokens, including extensive coverage of CJK
ideographs, Arabic script, Cyrillic, Devanagari, and other writing systems. For English-only mo-
bile deployment, the vast majority of these tokens are unused, yet each contributes a row to the
embedding matrix E ∈ R262208×d (where d = 2560 is the hidden dimension in unquantized form, or
its quantized equivalent).

3.2.1 Token Collection Strategy

We construct a retained token set T through multiple collection passes:

1. System dictionary: All words from the macOS system dictionary (/usr/share/dict/web2),
providing approximately 235,000 English word forms.

2. Inflected forms: For each dictionary word, we generate 26 morphological variants using com-
mon English suffixes (-s, -ed, -ing, -er, -est, -ly, -tion, -ness, -ment, -able, -ible, -ful,
-less, -ous, -ive, -al, -ize, -ise, -ity, -ence, -ance, -ure, -dom, -ship, -ward, -wise).

3. ASCII vocabulary scan: All tokens in the original vocabulary that consist entirely of ASCII-
printable characters (codes 32–126). This is critical for capturing BPE-merged subword tokens.

4. Numeric tokens: All tokens representing numbers, decimal points, and common numeric
formats.

5. Byte fallback tokens: All 256 byte-level tokens used by SentencePiece for out-of-vocabulary
character encoding.

6. Special tokens: Beginning-of-sequence, end-of-sequence, padding, vision tokens (boi=255999,
eoi=256000, image=262144), and chat template tokens (<start_of_turn>, <end_of_turn>).
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[Placeholder: Bar chart showing token count by collection source. ASCII vocabulary
scan contributes the most retained tokens beyond the base dictionary.]

Figure 1: Distribution of retained tokens by collection source. The ASCII vocabulary scan (Pass 3)
is essential for capturing BPE-merged subword tokens that do not appear in any dictionary.

3.2.2 Critical Finding: BPE Token Coverage

An early version of our pipeline retained only ∼80K tokens based on dictionary words and their
inflections. This approach produced severe generation quality degradation: the model would gen-
erate nonsensical outputs or fail to produce common English words. The root cause is that BPE
tokenization creates merged tokens (e.g., _the, _and, _is) that do not correspond to dictionary
entries but are essential for fluent generation.

Adding the ASCII vocabulary scan (Pass 3) increased the retained set to ∼144K tokens and
completely resolved the quality issue. This establishes a practical lower bound: for Gemma 3 with
English deployment, the vocabulary cannot be reduced below approximately 144K tokens without
degrading generation quality.

3.2.3 Compact Embedding Construction

Given the retained token set T with |T | = N ′ tokens, we construct:

• A compact embedding matrix E′ ∈ R(N ′+1)×d, where row 0 is a zero vector (default for
pruned tokens) and rows 1 through N ′ contain the embeddings of retained tokens in their
original order.

• A token map M ∈ ZV , where V = 262208 is the original vocabulary size. For each token index
t ∈ [0, V ):

M[t] =

{
k if token t is the k-th retained token
0 if token t is pruned

(1)

During inference, the embedding lookup becomes:

h = E′[M[t]] (2)

Since Gemma 3 uses tied word embeddings (tie_word_embeddings: true), the same token
map is applied during output logit computation:

logits[t] = (E′[M[t]])⊤hfinal (3)

The token map overhead is 262208 × 4 bytes ≈ 1MB (stored as int32), which is negligible
compared to the embedding savings.

Savings. The original embedding (quantized at 4-bit with group size 64) occupies approximately
262208 rows. The compact embedding at 144257 rows reduces this by ∼45%, saving approximately
170 MB of disk and memory.

5



3.3 Step 2: Vision fc2 Quantization with Dimension Padding

The SigLIP vision encoder in Gemma 3 contains 27 transformer layers, each with an MLP block
consisting of fc1 (expansion) and fc2 (projection) layers. While the text decoder is already 4-
bit quantized, the vision encoder weights remain in bfloat16, presenting a significant optimization
opportunity.

3.3.1 The Prime Factor Problem

MLX’s quantization implementation requires the quantized dimension to be divisible by the group
size g ∈ {32, 64, 128}. The SigLIP intermediate dimension is:

dinter = 4304 = 16× 269 (4)

Since 269 is prime, dinter is not divisible by any supported group size:

4304÷ 32 = 134.5 (not integer) (5)
4304÷ 64 = 67.25 (not integer) (6)

4304÷ 128 = 33.625 (not integer) (7)

This prevents direct quantization of the fc2 weight matrix Wfc2 ∈ Rdout×4304, where the input
dimension (4304) must be group-aligned.

3.3.2 Zero-Padding Solution

We pad the intermediate dimension to the next group-aligned value:

d′inter = ⌈4304/64⌉ × 64 = 68× 64 = 4352 (8)

The padding procedure for each vision layer ℓ ∈ {0, . . . , 26} is:

1. fc1 expansion: Dequantize W
(ℓ)
fc1 from 4-bit to bfloat16, pad from R4304×din to R4352×din by

appending 48 zero rows, then requantize to 4-bit.

2. fc1 bias: Pad b
(ℓ)
fc1 from R4304 to R4352 by appending 48 zeros.

3. fc2 quantization: Pad W
(ℓ)
fc2 from Rdout×4304 to Rdout×4352 by appending 48 zero columns, then

quantize from bfloat16 to 4-bit with group size 64.

Proposition 1 (Mathematical Equivalence). The zero-padding preserves the layer output exactly.
For input x ∈ Rdin:

a = σ(Wfc1x+ bfc1) ∈ R4304 (9)
a′ = σ(W′

fc1x+ b′
fc1) = [a;048] ∈ R4352 (10)

W′
fc2a

′ = [Wfc2 | 0] · [a;048] = Wfc2a (11)

where σ denotes the GELU activation and the appended zero neurons contribute nothing to the dot
product.

Savings. Quantizing 27 layers of fc2 from bfloat16 to 4-bit saves approximately 191 MB. The
padding overhead (48 extra neurons per layer, quantized) is less than 1 MB total.

6



3.4 Step 3: Text Layer Pruning

Transformer-based language models exhibit significant redundancy in their deeper layers, where
representations become increasingly refined but with diminishing marginal contribution [Men et al.,
2024]. We exploit this by removing the three deepest layers (indices 31, 32, 33) from the 34-layer
text decoder, retaining layers 0–30.

3.4.1 Layer Selection Rationale

The deepest layers in a transformer are responsible for final task-specific refinement, while earlier
layers capture more fundamental linguistic features [Jawahar et al., 2019]. For a generative model,
removing the deepest layers has the least impact on the model’s core language understanding
capabilities. Moreover, these layers are often the most redundant, as the representation has already
converged by layer 30 in a 34-layer model.

3.4.2 Procedure

For each removed layer index j ∈ {31, 32, 33}, we delete all associated weight tensors:

• Self-attention: W
(j)
q ,W

(j)
k ,W

(j)
v ,W

(j)
o

• MLP: W(j)
gate,W

(j)
up ,W

(j)
down

• Layer normalization: γ
(j)
input, γ

(j)
post_attn, γ

(j)
pre_ff, γ

(j)
post_ff

The remaining layers are renumbered contiguously (0–30), and num_hidden_layers in the con-
figuration is updated from 34 to 31. If a per_layer_intermediate_sizes array exists from a
previous step, the corresponding entries are also removed.

Savings. Each text layer occupies approximately 53 MB (4-bit quantized). Removing three layers
saves 3× 53 ≈ 159MB.

3.5 Step 4: Resolution Reduction

The SigLIP vision encoder processes images at 896 × 896 pixels with 14 × 14 patches, producing
a 64 × 64 = 4096 grid of patch embeddings. These are pooled via average pooling with a 4 × 4
kernel to produce 256 image tokens for the text decoder. The self-attention mechanism in the vision
encoder has computational cost O(n2 ·d) where n is the number of patches, making it the dominant
source of compute and thermal dissipation during image processing.

3.5.1 Resolution Selection

We evaluate three candidate resolutions:
The 672 px resolution provides a ∼3.2× reduction in vision self-attention compute while main-

taining sufficient spatial resolution for accurate image understanding. As we demonstrate in Sec-
tion 5.4, the 448 px resolution is too aggressive and leads to degenerate generation behavior.

7



Table 1: Resolution candidates and their computational characteristics. Patch size is 14 × 14
throughout.

Resolution Patches Image Tokens Attention Cost Relative Cost

896× 896 (original) 64× 64 = 4096 256 O(40962d) 1.0×
672× 672 (selected) 48× 48 = 2304 144 O(23042d) 0.32×
448× 448 (rejected) 32× 32 = 1024 64 O(10242d) 0.06×

3.5.2 Position Embedding Interpolation

The learned position embeddings P ∈ Rnorig×dvis must be adapted from the original 64× 64 grid to
the new 48× 48 grid. We reshape the position embedding matrix into a spatial grid and apply 2D
bilinear interpolation:

Pgrid = reshape(P, [64, 64, dvis]) (12)
P′

grid = bilinear_interpolate(Pgrid, [48, 48]) (13)
P′ = reshape(P′

grid, [2304, dvis]) (14)

For quantized position embeddings, we first dequantize to full precision, perform the interpola-
tion, and then requantize. The configuration is updated: image_size: 672, mm_tokens_per_image:
144.

Savings. Disk savings are minimal (∼1 MB for the smaller position embedding matrix). The pri-
mary benefit is runtime: reduced activation memory, lower attention computation, and significantly
reduced thermal output during image processing.

3.6 Step 5: MLP Neuron Pruning

3.6.1 Activation Profiling

We perform activation profiling by running 20 forward passes with diverse text inputs through the
model, recording the mean absolute activation magnitude ā

(ℓ)
i for each neuron i in each layer ℓ:

ā
(ℓ)
i =

1

T

T∑
t=1

|σ(W(ℓ)
gateht + b

(ℓ)
gate)i| (15)

where T is the total number of tokens across all forward passes and σ denotes the gelu_pytorch_tanh
activation.

3.6.2 Dead Neuron Discovery

Profiling reveals a striking pattern: layers 14–30 contain 60–100% “dead” neurons with mean
activation below a threshold τ = 0.5. Layer 29 is the most extreme case, with nearly 100% dead
neurons. In contrast, layers 0–13 exhibit healthy activation patterns with the majority of neurons
contributing meaningfully to the computation.
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[Placeholder: Heatmap showing per-layer neuron activation magnitudes. Layers 14–30
show predominantly low activations (dark), while layers 0–13 show healthy activation

patterns (bright).]

Figure 2: Neuron activation heatmap across layers. Layers 14–30 exhibit 60–100% dead neurons
at threshold τ = 0.5. Layer 29 is nearly 100% dead. Early layers (0–13) show healthy activation
patterns and are protected from pruning.

3.6.3 Pruning Strategy

We define the pruning policy with three constraints:

1. Layer protection: Layers 0–13 are protected and never pruned, preserving the model’s core
feature extraction capability.

2. Activation threshold: For each unprotected layer ℓ, neuron i is a candidate for removal if
ā
(ℓ)
i < τ .

3. Maximum reduction: The pruned intermediate dimension d′ℓ must satisfy:

d′ℓ ≥ (1− rmax) · dℓ (16)

where rmax = 0.25 is the maximum reduction ratio and dℓ is the original intermediate dimension.

4. Group alignment: The pruned dimension is aligned to the quantization group size:

d′ℓ =

⌊
|{i : ā(ℓ)i ≥ τ}|

g

⌋
· g (17)

where g = 64 is the group size. If the aligned count exceeds the maximum reduction constraint,
we adjust upward.

Formally, the retained neuron count for layer ℓ is:

d′ℓ = max
(

aligng(|{i : ā
(ℓ)
i ≥ τ}|), ⌈(1− rmax) · dℓ/g⌉ · g

)
(18)

The neurons with the highest activation magnitudes are retained (up to d′ℓ), and the correspond-
ing rows/columns are extracted from the MLP weight matrices:

• W
(ℓ)
gate ∈ Rdℓ×dh → Rd′ℓ×dh (remove rows)

• W
(ℓ)
up ∈ Rdℓ×dh → Rd′ℓ×dh (remove rows)

• W
(ℓ)
down ∈ Rdh×dℓ → Rdh×d′ℓ (remove columns)

The per-layer intermediate sizes are recorded as per_layer_intermediate_sizes in the model
configuration:

[10240, . . . , 10240︸ ︷︷ ︸
14

, 7680, . . . , 7680︸ ︷︷ ︸
17

] (19)
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Savings. Pruning 25% of neurons from 17 layers saves approximately 188 MB. Each pruned layer
reduces by 0.25×10240

10240 × (layer MLP size) ≈ 11MB per layer.

3.7 Step 6: Weight Splitting

The final step partitions the single model.safetensors file into two components:

• language_model.safetensors (1.9 GB): All text decoder weights, including the compact em-
bedding, layer normalization parameters, and the final norm.

• vision_model.safetensors (231 MB): All SigLIP vision encoder weights and the multimodal
projector.

A model.safetensors.index.json file maps each weight tensor to its respective file, following
the HuggingFace multi-file safetensors convention.

Runtime Benefits. For text-only inference, the application loads only language_model.safetensors,
consuming ∼2.2 GB of peak memory. When the user sends an image for the first time, the vision
weights are loaded on demand, increasing peak memory to ∼2.5 GB. This lazy loading strategy is
particularly valuable on memory-constrained mobile devices where text-only conversations are the
common case.

4 Implementation

4.1 MLX Swift Integration

We implement the compressed model inference in Apple’s MLX Swift framework [Hannun et al.,
2023, Apple, 2024]. Several modifications to the standard Gemma 3 implementation in mlx-swift-lm
are required:

4.1.1 Token Map Support

The token map M must be loaded and applied during both embedding lookup and output logit
computation. We wrap the token map as an MLXArrayBox—a reference-type wrapper that hides
the array from MLX’s automatic module parameter reflection:

class MLXArrayBox {
let value: MLXArray
init(_ value: MLXArray) { self.value = value }

}

This prevents the token map from being treated as a learnable parameter during weight loading,
while keeping it accessible for the embedding lookup:

func callAsFunction(_ x: MLXArray) -> MLXArray {
let indices = tokenMap.value.gathered(x.flattened())
return compactEmbedding(indices).reshaped(shape + [embeddingDimension])

}
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4.1.2 Per-Layer Intermediate Sizes

The pruned model uses different MLP intermediate dimensions across layers. We modify the
TransformerModel initialization to read per_layer_intermediate_sizes from the configuration
and pass the appropriate dimension to each MLP layer:

for i in 0..<config.numHiddenLayers {
let intermediateSize = config.perLayerIntermediateSizes?[i]

?? config.intermediateSize
layers.append(TransformerLayer(config, intermediateSize))

}

4.1.3 Split Weight Loading

The model.safetensors.index.json file directs the weight loader to the appropriate safetensors
file for each tensor. MLX Swift’s built-in multi-file loading handles this transparently, but we ensure
that vision weights are only loaded when the VisionModel module is first accessed.

4.2 Inference Pipeline

The gemma-cli tool provides a command-line interface for inference:

gemma-cli --model /path/to/compressed-model \
--prompt "Describe this image" \
--image photo.jpg \
--max-tokens 200 \
--temperature 0.0

The pipeline supports streaming token generation with real-time performance statistics (tokens
per second, peak memory usage). It is built using Swift’s ArgumentParser framework and the
MLXVLM library for vision-language model inference.

5 Experiments

5.1 Experimental Setup

Hardware. All experiments are conducted on an Apple Silicon Mac with unified memory archi-
tecture. We report peak memory usage as measured by MLX’s memory profiling utilities.

Models. We evaluate three configurations:

• Original: Gemma 3 4B IT QAT 4-bit, unmodified (2.8 GB).

• Lite (Step 4): After vocabulary pruning, vision fc2 quantization, text layer pruning, and reso-
lution reduction (2.3 GB). This variant does not include neuron pruning or weight splitting.

• Mobile (Step 7): The fully compressed model after all pipeline stages (2.1 GB).

Evaluation. We assess models on four axes: (1) text generation quality, (2) image understanding
accuracy, (3) inference speed (prompt processing and token generation, in tokens per second), and
(4) peak memory consumption.
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Table 2: Text-only inference performance. Prompt and generation speeds are in tokens per second.
Peak memory includes model weights, KV cache, and intermediate activations.

Model Disk Size Prompt (t/s) Generation (t/s) Peak Memory

Original 2.8 GB 109 90 2910 MB
Lite (Step 4) 2.3 GB ∼120 ∼110 ∼2500 MB
Mobile (Step 7) 2.1 GB 120 110 2231 MB

Table 3: Image understanding performance across compression stages. Quality is assessed by human
evaluation of the generated description’s accuracy and completeness.

Model Prompt (t/s) Gen (t/s) Peak Mem Quality

Original (896 px) 54 27 ∼5500 MB Excellent
Step 3 (896 px) 73 61 4850 MB Good
Mobile (672 px) 184 104 4358 MB Good

5.2 Text-Only Performance

We evaluate text generation with the prompt “Hello, how are you?” using greedy decoding
(temperature=0.0) and a maximum of 100 tokens.

As shown in Table 2, the fully compressed Mobile model achieves a 22% improvement in genera-
tion speed (110 vs. 90 t/s) and a 23% reduction in peak memory (2231 vs. 2910 MB). The speedup
is attributed to the reduced model size (fewer parameters to load and compute through) and the
25% neuron reduction in layers 14–30. Prompt processing speed improves modestly from 109 to
120 t/s, as prompt processing is primarily memory-bandwidth bound.

5.3 Image Understanding Performance

We evaluate image understanding using a test photograph of a pizza with accompanying condiments.
The prompt is “Describe this image in detail.” with greedy decoding and a maximum of 200 tokens.

The results in Table 3 demonstrate dramatic improvements in image prompt processing speed:
184 t/s for the Mobile model vs. 54 t/s for the original, a 3.4× speedup. This is primarily due to the
reduced patch count (2304 vs. 4096), which quadratically reduces the self-attention computation.
Generation speed improves from 27 to 104 t/s (3.9×), reflecting the cumulative effect of text
layer pruning and neuron removal. Peak memory during image processing drops from ∼5.5 GB to
∼4.4 GB, bringing multimodal inference within practical mobile deployment budgets.

The Mobile model correctly identifies the pizza, its toppings (cheese, herbs), the pizza box, and
accompanying condiments (sauce, seasoning). While descriptions are slightly less detailed than the
original model, the core understanding is preserved.

5.4 Failure Mode Analysis

A critical contribution of this work is the systematic identification of compression techniques that
fail catastrophically for VLMs. We document three such failures:
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Table 4: Failed compression experiments. These configurations were evaluated and rejected during
pipeline development.

Experiment Savings Result

448 px resolution runtime only Token repetition loops: the model
correctly begins describing the im-
age but enters a degenerate cycle, re-
peating phrases indefinitely.

Remove vision layers 12–15 35 MB Complete image understanding fail-
ure: the model misidentifies a pizza
as “skin texture” and produces hal-
lucinated descriptions unrelated to
the image content.

80K vocabulary (v1) 261 MB Generation quality collapse: miss-
ing BPE-merged tokens cause the
model to produce fragmented, non-
sensical text for common English
sentences.

5.4.1 448px Resolution Failure

At 448×448 pixels, the vision encoder produces only 32 × 32 = 1024 patches, pooled to 64 image
tokens. This represents a 16× reduction in vision self-attention compute compared to the original.
However, the reduced spatial information is insufficient for coherent image understanding: the
model correctly begins its description (e.g., recognizing a pizza) but quickly enters a token repetition
loop, generating the same phrases cyclically. This suggests a critical minimum information threshold
for the vision encoder to provide sufficient grounding for the language model.

We measured performance before detecting the failure: prompt processing at 86 t/s, generation
at 26 t/s, and peak memory of 3.86 GB. While the memory reduction is attractive, the generation
quality is unusable.

5.4.2 Vision Layer Removal Failure

Removing four SigLIP vision layers (12–15) saves only 35 MB but completely destroys the vision
encoder’s representational capacity. The model misidentifies a pizza photograph as “skin texture,”
producing hallucinated descriptions entirely unrelated to the image content. This demonstrates
that the 27-layer SigLIP encoder has minimal redundancy—unlike the text decoder, where three
layers can be removed with acceptable quality loss. The asymmetry is likely because the vision
encoder is a pre-trained SigLIP model fine-tuned end-to-end, whereas the text decoder has inherent
redundancy in its deeper layers.

Notably, this variant showed the fastest prompt processing (154 t/s) and low memory (3.80 GB),
making it superficially attractive if one only considers efficiency metrics.

5.4.3 Vocabulary Under-Pruning Failure

The initial vocabulary pruning to 80K tokens (based on dictionary words and inflections, without
the ASCII vocabulary scan) appeared successful in basic testing but failed on more diverse prompts.
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Table 5: Cumulative compression across pipeline stages. Each step builds on the output of the
previous step.

Step Operation Disk Size Savings Cumulative

Baseline Original QAT 4-bit 2.8 GB — —
Step 1 Vocabulary pruning 2.54 GB 170 MB 170 MB
Step 2 Vision fc2 quantization 2.35 GB 191 MB 361 MB
Step 3 Text layer pruning 2.19 GB 159 MB 520 MB
Step 4 Resolution reduction 2.19 GB ∼1 MB 521 MB
Step 5 Neuron pruning 2.00 GB 188 MB 709 MB
Step 6 Weight splitting 2.10 GB* — 709 MB

*Split total: 1.9 GB language + 231 MB vision = 2.1 GB. Slight increase due to index metadata.

The root cause is that BPE tokenization creates merged subword tokens that do not appear in any
dictionary. For example, the token “_I” (the word “I” with a leading space) is a common BPE
merge that maps to a single token ID. Without this token, the model must fall back to byte-level
encoding, breaking the expected input distribution and causing generation to collapse.

Adding the ASCII vocabulary scan increased the retained token count from ∼80K to ∼144K,
resolving all observed quality issues. This establishes that BPE token coverage, not dictionary
coverage, is the binding constraint for vocabulary pruning.

5.5 Incremental Compression Analysis

Table 5 shows the cumulative effect of each compression stage. The three largest contributors
are vision fc2 quantization (191 MB), neuron pruning (188 MB), and vocabulary pruning (170 MB).
Resolution reduction contributes minimal disk savings but provides the largest runtime benefit
through reduced activation memory and attention computation.

5.6 Quality Analysis

Text Generation. The compressed model produces coherent, fluent English text. However, we
observe minor degradation in contraction handling: the model occasionally generates “I’s” instead
of “I’m,” likely due to the combined effect of layer pruning and neuron removal altering the model’s
learned distribution over short common phrases. This is a known consequence of structured pruning
without subsequent fine-tuning.

Image Understanding. At 672 px, the model retains the ability to correctly identify objects,
scenes, and attributes in photographs. Descriptions are somewhat less detailed than the original
896 px model—for example, mentioning fewer specific toppings on a pizza—but the core under-
standing is preserved. The model does not hallucinate or misidentify objects, in stark contrast to
the 448 px and vision-layer-pruned variants.
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6 Discussion

6.1 Compression-Quality Trade-offs

Our pipeline achieves a 25% reduction in disk size (2.8→2.1 GB) and a 23% reduction in text-only
peak memory (2.9→2.2 GB) while maintaining functional text and image understanding. However,
the quality-compression frontier is not smooth: small additional compression (e.g., 35 MB from
vision layer removal) can cause catastrophic failure, while large compressions (e.g., 191 MB from
fc2 quantization) can be lossless.

This asymmetry arises from the heterogeneous sensitivity of VLM components. The text de-
coder tolerates significant pruning (3 layers, 25% of neurons in 17 layers) because its 34-layer depth
provides substantial redundancy. The vision encoder, with its 27 tightly-coupled SigLIP layers
fine-tuned for visual representation, tolerates almost no structural modification.

6.2 The BPE Coverage Threshold

Our finding that vocabulary pruning requires ∼144K tokens (not ∼80K) highlights a subtle but
critical aspect of subword tokenization. Dictionary-based token selection misses BPE-merged forms
that are essential for the model’s learned input distribution. The model’s embedding space was
trained with specific BPE tokens as atomic units; removing these tokens and forcing byte-level
fallback fundamentally disrupts the expected input representation.

This suggests a general principle for vocabulary pruning: the retained vocabulary must include
all BPE merges that occur in the target language’s character set, not just the tokens corresponding
to dictionary words. For English, this means retaining all ASCII-printable BPE merges, which
approximately doubles the vocabulary requirement compared to a dictionary-only approach.

6.3 Resolution as Thermal Management

An unexpected finding is that resolution reduction is the single most effective technique for re-
ducing thermal output during image processing, despite contributing negligible disk savings. The
∼3× reduction in vision self-attention compute translates directly to reduced GPU utilization and
heat generation. On mobile devices where thermal throttling limits sustained performance, this is
arguably more important than raw speed improvements.

The quadratic scaling of self-attention with patch count (O(n2)) means that modest resolution
reductions yield large computational savings: a 25% reduction in linear resolution (896→672) re-
duces attention cost by ∼68%. This is significantly more efficient than reducing the number of
attention layers, which scales linearly.

6.4 The Vision Encoder Sensitivity Puzzle

The extreme sensitivity of the SigLIP vision encoder to layer removal (−4 layers→ complete failure)
contrasts with the text decoder’s robustness (−3 layers→minor quality loss). We hypothesize three
contributing factors:

1. Pre-training regime: SigLIP is pre-trained with contrastive learning on image-text pairs, cre-
ating tightly interdependent layer representations. The text decoder, trained with autoregressive
language modeling, develops more modular, hierarchical representations.
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2. Information bottleneck: The vision encoder must compress a high-dimensional image (672×
672×3 ≈ 1.35M values) into 144 tokens, requiring every layer to contribute to this lossy compres-
sion. The text decoder operates on a sequence that is already in the model’s native representation
space.

3. Absolute layer count: 27 layers is already compact for a vision encoder processing images of
this complexity. The model has less redundancy to spare compared to the 34-layer text decoder.

6.5 Limitations

Our evaluation has several limitations. First, we evaluate on a small set of qualitative examples
rather than standardized VLM benchmarks (VQAv2, MMLU, etc.), as our focus is on deployment
feasibility rather than leaderboard performance. Second, the neuron pruning threshold (τ = 0.5)
and maximum reduction ratio (rmax = 0.25) were selected based on limited experimentation; a more
thorough hyperparameter search might identify better operating points. Third, we do not apply
knowledge distillation or fine-tuning after compression, which could recover some of the observed
quality degradation. Finally, while we report memory and speed measurements on Apple Silicon,
we have not yet validated on actual iPhone/iPad devices, where memory pressure from background
processes and thermal throttling may affect results.

7 Conclusion and Future Work
We have presented Gemma-Prune, a multi-stage compression pipeline that reduces the Gemma 3 4B IT QAT
vision-language model from 2.8 GB to 2.1 GB while preserving both text generation and image un-
derstanding capabilities. The pipeline combines six complementary techniques—vocabulary prun-
ing, vision encoder quantization with dimension padding, text layer removal, resolution reduction,
dead neuron pruning, and weight splitting—each targeting a distinct source of redundancy.

Key results include:

• 25% disk reduction: 2.8 GB → 2.1 GB (709 MB total savings).

• 23% memory reduction: 2910 MB → 2231 MB for text-only inference.

• 3.4× faster image processing: 184 t/s vs. 54 t/s prompt processing.

• 22% faster generation: 110 t/s vs. 90 t/s for text-only inference.

• ∼3× vision attention reduction: through 896→672 px resolution change.

Equally important, we document three critical failure modes: (1) vision layer removal destroys
image understanding with minimal savings, (2) 448 px resolution induces token repetition loops,
and (3) vocabulary pruning below ∼144K tokens causes generation collapse due to missing BPE
merges. These findings provide practical guidelines for future VLM compression research.

Future Work. Several directions remain for exploration:

1. Knowledge distillation: Fine-tuning the compressed model with the original model as teacher
could recover quality degradation, particularly for text contractions and detailed image descrip-
tions.
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2. Dynamic resolution: Adapting resolution based on image content (high resolution for detailed
scenes, low resolution for simple images) could further optimize the compute-quality trade-off.

3. Device-specific profiling: Measuring actual thermal behavior and sustained throughput on
iPhone and iPad devices under realistic usage patterns.

4. Attention pruning: Exploring structured pruning of attention heads (complementary to neu-
ron pruning) in both the text decoder and vision encoder.

5. Speculative decoding: Combining the compressed model with a smaller draft model for spec-
ulative decoding could further improve generation speed.

6. Generalization: Applying the pipeline to other VLMs (LLaVA, Phi-3 Vision, Qwen-VL) to
validate the generality of our findings.
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Table 6: Original Gemma 3 4B IT QAT 4-bit configuration parameters.

Text Decoder

Vocabulary size 262,208
Hidden size 2560
Intermediate size (MLP) 10,240
Number of layers 34
Attention heads 8 (GQA)
Key-value heads 4
Head dimension 256
Activation function gelu_pytorch_tanh
Sliding window 1024
Sliding window pattern 6
Tied embeddings Yes
Quantization 4-bit, group_size=64

Vision Encoder (SigLIP)

Hidden size 1152
Intermediate size 4304
Number of layers 27
Attention heads 16
Image size 896 × 896
Patch size 14 × 14
Image tokens per image 256

Special Tokens

BOI token index 255999
EOI token index 256000
Image token index 262144
EOS token IDs [1, 106]

A Model Configuration Details

A.1 Original Model Configuration

A.2 Compressed Model Configuration

B Compression Pipeline Pseudocode

C Detailed Benchmark Results by Pipeline Stage
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Table 7: Compressed Gemma-Prune model configuration.

Text Decoder

Vocabulary size (logical) 262,208
Compact embedding size 144,257
Token map int32[262208] → compact index
Number of layers 31 (removed 31, 32, 33)
Per-layer MLP sizes [10240]× 14 + [7680]× 17

Vision Encoder

Intermediate size 4352 (padded from 4304)
Number of layers 27 (all retained)
Image size 672 × 672
Image tokens per image 144
fc2 quantization 4-bit, group_size=64

Weight Files

language_model.safetensors 1.9 GB
vision_model.safetensors 231 MB
Total 2.1 GB

Table 8: Image understanding benchmarks at each compression stage using a test photograph of a
pizza. Prompt: “Describe this image in detail.” with temperature=0.0, max_tokens=200.

Configuration Prompt (t/s) Gen (t/s) Peak Mem (MB) Quality

Original (896 px) 54.3 26.6 5540 Excellent
Step 3 (896 px) 72.7 61.3 4850 Good
Step 4 / 672 px 122.7 65.7 4590 Good
Step 4 / 448 px 86.1 26.0 3860 Failed (repetition)
Step 5 / −4 vis. layers 153.9 63.5 3800 Failed (hallucination)
Mobile (Step 7, 672 px) 184 104 4358 Good
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Algorithm 1 Gemma-Prune Compression Pipeline
Require: Original model M0 (Gemma 3 4B IT QAT 4-bit)
Ensure: Compressed model M6

1: Step 1: Vocabulary Pruning
2: T ← CollectTokens(dictionary, ASCII, special, byte_fallback)
3: E′ ← ExtractEmbeddings(M0, T )
4: M← BuildTokenMap(T , Vorig)
5: M1 ← ReplaceEmbedding(M0, E′, M)
6: Step 2: Vision fc2 Quantization
7: for ℓ = 0 to 26 do
8: W

(ℓ)
fc1 ← PadRows(Dequant(W(ℓ)

fc1), 4352)
9: W

(ℓ)
fc2 ← Quantize(PadCols(W(ℓ)

fc2, 4352), 4-bit, g=64)
10: end for
11: M2.config.vision.intermediate_size← 4352
12: Step 3: Text Layer Pruning
13: M3 ← RemoveLayers(M2, text, {31, 32, 33})
14: M3.config.num_hidden_layers← 31
15: Step 4: Resolution Reduction
16: P′ ← BilinearInterp2D(P, 64×64→ 48×48)
17: M4.config.image_size← 672
18: Step 5: Neuron Pruning
19: ā← ProfileActivations(M4, T=20)
20: for ℓ = 14 to 30 do
21: Sℓ ← TopK(ā(ℓ), d′ℓ) {Retain top neurons}
22: PruneMLP(M(ℓ)

5 , Sℓ)
23: end for
24: Step 6: Weight Splitting
25: SplitWeights(M5) → {language_model.safetensors, vision_model.safetensors}
26: M6 ← UpdateIndex(M5)
27: return M6
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